JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A predictive model for the maintenance of industrial machinery in the context of industry 4.0

    • Autor
      Ruiz-Sarmiento, José RaúlAutoridad Universidad de Málaga; González-Monroy, JavierAutoridad Universidad de Málaga; Moreno-Dueñas, Francisco ÁngelAutoridad Universidad de Málaga; Galindo-Andrades, CiprianoAutoridad Universidad de Málaga; Bonelo, Jose-Maria; González-Jiménez, Antonio JavierAutoridad Universidad de Málaga
    • Fecha
      2020-01
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Maquinaria - Mantenimiento y reparación - Proceso de datos
    • Resumen
      The Industry 4.0 paradigm is being increasingly adopted in the production, distribution and commercialization chains worldwide. The integration of the cutting-edge techniques behind it entails a deep and complex revolution –changing from scheduled-based processes to smart, reactive ones– that has to be thoroughly applied at different levels. Aiming to shed some light on the path towards such evolution, this work presents an Industry 4.0 based approach for facing a key aspect within factories: the health assessment of critical assets. This work is framed in the context of the innovative project SiMoDiM, which pursues the design and integration of a predictive maintenance system for the stainless steel industry. As a case of study, it focuses on the machinery involved in the production of high-quality steel sheets, i.e. the Hot Rolling Process, and concretely on predicting the degradation of the drums within the heating coilers of Steckel mills (parts with an expensive replacement that work under severe mechanical and thermal stresses). This paper describes a predictive model based on a Bayesian Filter, a tool from the Machine Learning field, to estimate and predict the gradual degradation of such machinery, permitting the operators to make informed decisions regarding maintenance operations. For achieving that, the proposed model iteratively fuses expert knowledge with real time information coming from the hot rolling processes carried out in the factory. The predictive model has been fitted and evaluated with real data from ∼118k processes, proving its virtues for promoting the Industry 4.0 era.
    • URI
      https://hdl.handle.net/10630/29794
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.engappai.2019.103289
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    02_eaai_ruiz2019predictive_DRAFT.pdf (7.732Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA