We will study evolution algebras A that are free modules of dimension two over domains. We start by making some general considerations about algebras over domains: They are sandwiched between a certain essential D-submodule and its scalar extension over the field of fractions of the domain. We introduce the notion of quasiper- fect algebras and we characterize the perfect and quasiperfect evolution algebras in terms of the determinant of its structure matrix. We classify the two-dimensional perfect evolution algebras over domains parametrizing the isomorphism classes by a convenient moduli set.