JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Vehicle type detection by ensembles of convolutional neural networks operating on super resolved images

    • Autor
      Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Thurnhofer-Hemsi, Karl
    • Fecha
      2018
    • Editorial/Editor
      IOS Press
    • Palabras clave
      Videovigilancia; Vigilancia electrónica
    • Resumen
      The automatic detection and classification of vehicles in traffic sequences is a typical task which is carried out in many practical video surveillance systems. The advent of deep learning has facilitated the design of these systems. However, limitations in the resolution of the surveillance cameras imply that the vehicles are not clearly defined in the incoming video frames, which hampers the classification performance of deep learning Convolutional Neural Networks. In this paper a method is presented to overcome this challenge, which is based on several steps. An initial segmentation is followed by a postprocessing of the segmented images to solve vehicle overlapping and differing vehicle sizes. Then, a super resolution algorithm is employed to improve the definition of the image windows to be supplied to the neural networks. Finally, the outputs of an ensemble of such networks is integrated in order to obtain an improved recognition performance by the consensus of the networks of the ensemble. Several computational tests using well-known benchmarks demonstrate the effectiveness of the proposal, even in hard situations. Therefore, our vehicle classification system overcomes many limitations of naive application of Convolutional Neural Networks, since each proposed subsystem tackles different difficulties which arise in real traffic video data.
    • URI
      https://hdl.handle.net/10630/29688
    • DOI
      https://dx.doi.org/10.3233/ICA-180577
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICAE 2018 postprint.pdf (2.734Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA