Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez-Rodríguez, Ignacio
dc.contributor.authorCampo-Valera, María
dc.contributor.authorRodríguez, José-Víctor
dc.date.accessioned2024-01-31T13:46:24Z
dc.date.available2024-01-31T13:46:24Z
dc.date.issued2023-09-22
dc.identifier.citationIgnacio Rodríguez-Rodríguez, María Campo-Valera, José-Víctor Rodríguez, Forecasting glycaemia for type 1 diabetes mellitus patients by means of IoMT devices, Internet of Things, Volume 24, 2023, 100945, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2023.100945.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/29539
dc.description.abstractThe chronic metabolic condition, Type 1 diabetes mellitus (DM1), is marked by consistent hyperglycemia due to the body's inability to produce sufficient insulin. This necessitates the patient's daily monitoring of blood glucose fluctuations to discern a trend and predict future glycemia, subsequently dictating the amount of external insulin needed to regulate glycemia effectively. However, this technique often grapples with a degree of inaccuracy, presenting potential hazards. Nonetheless, contemporary advancements in information and communication technologies (ICT) coupled with novel biological signal sensors offer a refreshing perspective for DM1 management by enabling comprehensive, continual patient health evaluation. Herein, burgeoning technological disruptions such as Big Data, the internet of medical things (IoMT), cloud computing, and machine learning algorithms (ML) could serve pivotal roles in the effective control of DM1. This paper delves into the exploration of the latest IoMT-based methodologies for the unbroken surveillance of DM1 management, facilitating a profound characterization of diabetic patients. The fusion of wearable technologies with machine learning strategies has the potential to yield robust models for short-term blood glucose prediction. The ambition of this study is to develop precise, individual-centric prediction models harnessing an array of pertinent factors. The study applied modeling techniques to a comprehensive dataset comprising glycaemia-associated biological attributes, sourced from an expansive passive monitoring campaign involving 40 DM1 patients. Leveraging the Random Forest method, the resulting models can predict glucose levels over a 30-min time span with an average error as minimal as 18.60 mg/dL for six-hour data and 26.21 mg/dL for a 45-minute prediction horizon, offering also a good performance in the prediction delay.es_ES
dc.description.sponsorshipFunding for open Access charge: Universidad de Málaga / CBUA.es_ES
dc.language.isospaes_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiabeteses_ES
dc.subjectInternet de los objetoses_ES
dc.subjectInteligencia artificial - Aplicaciones médicases_ES
dc.subjectMedicina - Procesos de datoses_ES
dc.subject.otherDiabeteses_ES
dc.subject.otherIoTes_ES
dc.subject.otherWearable trackerses_ES
dc.subject.otherContinuous glucose monitoringes_ES
dc.subject.otherMachine learninges_ES
dc.titleForecasting glycaemia for type 1 diabetes mellitus patients by means of IoMT deviceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1016/j.iot.2023.100945
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional