Mostrar el registro sencillo del ítem

dc.contributor.authorArco, Juan E.
dc.contributor.authorGallego-Molina, Nicolás J.
dc.contributor.authorOrtiz-García, Andrés 
dc.contributor.authorArroyo-Alvis, Katy
dc.contributor.authorLópez-Pérez, P. Javier
dc.date.accessioned2024-01-18T10:50:53Z
dc.date.available2024-01-18T10:50:53Z
dc.date.issued2023-12-15
dc.identifier.citationJuan E. Arco, Nicolás J. Gallego-Molina, Andrés Ortiz, Katy Arroyo-Alvis, P. Javier López-Pérez, Identifying HRV patterns in ECG signals as early markers of dementia, Expert Systems with Applications, Volume 243, 2024, 122934, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2023.122934. (https://www.sciencedirect.com/science/article/pii/S095741742303436X)es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28866
dc.description.abstractThe appearance of Artificial Intelligence (IA) has improved our ability to process large amount of data. These tools are particularly interesting in medical contexts, in order to evaluate the variables from patients’ screening analysis and disentangle the information that they contain. We propose in this work a novel method for evaluating the role of electrocardiogram (ECG) signals in the human cognitive decline. This framework offers a complete solution for all the steps in the classification pipeline, from the preprocessing of the raw signals to the final classification stage. Numerous metrics are computed from the original data in terms of different domains (time, frequency, etc.), and dimensionality is reduced through a Principal Component Analysis (PCA). The resulting characteristics are used as inputs of different classifiers (linear/non-linear Support Vector Machines, Random Forest, etc.) to determine the amount of information that they contain. Our system yielded an area under the Receiver Operating Characteristic (ROC) curve of 0.80 identifying Mild Cognitive Impairment (MCI) patients, showing that ECG contain crucial information for predicting the appearance of this pathology. These results are specially relevant given the fact that ECG acquisition is much more affordable and less invasive than brain imaging used in most of these intelligent systems, allowing our method to be used in environments of any socioeconomic range.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga/CBUA. This work was supported by projects PID2022-137461NB-C32 (Spanish “Ministerio de Ciencia e Innovación, /AEI /10.13039/501100011033/ FEDER, UE), UMA20-FEDERJA-086 European Regional Development Funds (ERDF) “Una manera de hacer Europa”, and by Spanish “Ministerio de Universidades” (Next Generation EU funds) through Margarita-Salas grant to J.E. Arco.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectElectrocardiografíaes_ES
dc.subjectDemenciaes_ES
dc.subjectProcesado de señaleses_ES
dc.subject.otherHeart rate variabilityes_ES
dc.subject.otherMild cognitive impairmentes_ES
dc.subject.otherDementiaes_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherSignal processinges_ES
dc.titleIdentifying HRV patterns in ECG signals as early markers of dementiaes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1016/j.eswa.2023.122934
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional