JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Studying the Manifold Structure of Alzheimer’s Disease: A Deep Learning Approach Using Convolutional Autoencoders

    • Autor
      Martínez-Murcia, Francisco Jesús; Ortiz-García, AndrésAutoridad Universidad de Málaga; Górriz-Sáez, Juan Manuel; Ramírez, Javier; Castillo-Barnes, Diego
    • Fecha
      2020-01-01
    • Editorial/Editor
      IEEE
    • Palabras clave
      Alzheimer, Enfermedad de
    • Resumen
      Many classical machine learning techniques have been used to explore Alzheimer’s Disease, evolving from image decomposition techniques such as Principal Component Analysis towards higher-complexity, non-linear decomposition algorithms. With the arrival of the deep learning paradigm, it has become possible to extract high-level abstract features directly from MRI images that internally describe the distribution of data in low-dimensional manifolds. In this work, we try a new exploratory data analysis of Alzheimer’s Disease (AD) based on deep convolutional autoencoders. We aim at finding links between cognitive symptoms and the underlying neurodegenera- tion process by fusing the information of neuropsychological test outcomes, diagnoses and other clinical data with the imaging features extracted solely via a data-driven decomposition of MRI. The distribution of the extracted features in different combinations is then analysed and visualized using regression and classification analysis, and the influence of each coordinate of the autoencoder manifold over the brain is estimated. The imaging-derived markers could then predict clinical variables with correlations above 0.6 in the case of neuropsychological evaluation variables such as the MMSE or the ADAS11 scores, achieving a classification accuracy over 80% for the diagnosis of AD.
    • URI
      https://hdl.handle.net/10630/28806
    • DOI
      https://dx.doi.org/10.1109/JBHI.2019.2914970
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Studying_the_Manifold_Structure_of_Alzheimers_Disease_A_Deep_Learning_Approach_Using_Convolutional_Autoencoders.pdf (4.365Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA