JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    CMSA algorithm for solving the prioritized pairwise test data generation problem in software product lines.

    • Autor
      Ferrer-Urbano, Francisco JavierAutoridad Universidad de Málaga; Chicano-García, José-FranciscoAutoridad Universidad de Málaga; Ortega Toro, José Antonio
    • Fecha
      2020-11-10
    • Palabras clave
      Optimización combinatoria; Soporte lógico; Algoritmos computacionales
    • Resumen
      In Software Product Lines, it may be difficult or even impossible to test all the products of the family because of the large number of valid feature combinations that may exist (Ferrer et al. in: Squillero, Sim (eds) EvoApps 2017, LNCS 10200, Springer, The Netherlands, pp 3–19, 2017). Thus, we want to find a minimal subset of the product family that allows us to test all these possible combinations (pairwise). Furthermore, when testing a single product is a great effort, it is desirable to first test products composed of a set of priority features. This problem is called Prioritized Pairwise Test Data Generation Problem. State-of-the-art algorithms based on Integer Linear Programming for this problem are faster enough for small and medium instances. However, there exists some real instances that are too large to be computed with these algorithms in a reasonable time because of the exponential growth of the number of candidate solutions. Also, these heuristics not always lead us to the best solutions. In this work we propose a new approach based on a hybrid metaheuristic algorithm called Construct, Merge, Solve & Adapt. We compare this matheuristic with four algorithms: a Hybrid algorithm based on Integer Linear Programming, a Hybrid algorithm based on Integer Nonlinear Programming, the Parallel Prioritized Genetic Solver, and a greedy algorithm called prioritized-ICPL. The analysis reveals that CMSA is statistically significantly better in terms of quality of solutions in most of the instances and for most levels of weighted coverage, although it requires more execution time.
    • URI
      https://hdl.handle.net/10630/28271
    • DOI
      https://dx.doi.org/10.1007/s10732-020-09462-w
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    CMSA-JOH.pdf (662.9Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA