Mostrar el registro sencillo del ítem

dc.contributor.authorDe la Hoz Franco, Emiro
dc.contributor.authorDe la Hoz Correa, Eduardo
dc.contributor.authorOrtiz-García, Andrés 
dc.contributor.authorOrtega, Julio
dc.contributor.authorMartínez-Álvarez, Antonio
dc.date.accessioned2023-11-22T13:21:40Z
dc.date.available2023-11-22T13:21:40Z
dc.date.issued2014-08-20
dc.identifier.citationDe la Hoz, Emiro & Hoz, Eduardo & Ortiz, Andrés & Ortega, Julio & Martínez-Álvarez, Antonio. (2014). Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps. Knowledge-Based Systems. 71. 322-338. 10.1016/j.knosys.2014.08.013.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28114
dc.description.abstractFeature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organizing Maps (GHSOM) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labeled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.es_ES
dc.description.sponsorshipThis work has been funded by FEDER funds and the Ministerio de Ciencia e Innovación of the Spanish Government under Project No. TIN2012-32039.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectRedes de ordenadores - Medidas de seguridades_ES
dc.subjectInvestigación operativaes_ES
dc.subjectOptimización matemáticaes_ES
dc.subject.otherFeature selectiones_ES
dc.subject.otherMulti-objective optimizationes_ES
dc.subject.otherUnsupervised clusteringes_ES
dc.subject.otherGrowing self-organizing mapses_ES
dc.subject.otherNetwork anomaly detectiones_ES
dc.subject.otherIDSes_ES
dc.titleFeature selection by multi-objective optimization: application to network anomaly detection by hierarchical self-organizing maps.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1016/j.knosys.2014.08.013
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional