JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Statistical Agnostic Mapping: A framework in neuroimaging based on concentration inequalities.

    • Autor
      Górriz-Sáez, Juan Manuel; Jiménez-Mesa, Carmen; Romero-García, Raúl; Segovia, Fermín; Ramírez, Javier; Castillo-Barnes, Diego; Martínez-Murcia, Francisco Jesús; Ortiz-García, AndrésAutoridad Universidad de Málaga; Salas-González, Diego; Álvarez-Illán, Ignacio; Puntonet, Carlos; López-García, Diego; Gómez-Río, Manuel; Suckling, John
    • Fecha
      2020-09-26
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Medicina - Proceso de datos; Estadística médica; Complejidad computacional; Comprobación de hipótesis (Estadística)
    • Resumen
      In the 1970s a novel branch of statistics emerged focusing its effort on the selection of a function for the pattern recognition problem that would fulfill a relationship between the quality of the approximation and its complexity. This theory is mainly devoted to problems of estimating dependencies in the case of limited sample sizes, and comprise all the empirical out-of sample generalization approaches; e.g. cross validation (CV). In this paper a data-driven approach based on concentration inequalities is designed for testing competing hypothesis or comparing different models. In this sense we derive a Statistical Agnostic (non-parametric) Mapping (SAM) for neuroimages at voxel or regional levels which is able to: (i) relieve the problem of instability with limited sample sizes when estimating the actual risk via CV; and (ii) provide an alternative way of Family-wiseerror (FWE) corrected 𝑝-value maps in inferential statistics for hypothesis testing. Using several neuroimaging datasets (containing large and small effects) and random task group analyses to compute empirical familywise error rates, this novel framework resulted in a model validation method for small samples over dimension ratios, and a less-conservative procedure than FWE 𝑝-value correction to determine the significance maps from the inferences made using small upper bounds of the actual risk.
    • URI
      https://hdl.handle.net/10630/28106
    • DOI
      https://dx.doi.org/10.1016/j.inffus.2020.09.008
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    INFFUS_SAM.pdf (4.221Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA