Mostrar el registro sencillo del ítem

dc.contributor.authorOrtiz-García, Andrés 
dc.contributor.authorLozano Cuadra, Federico
dc.contributor.authorGórriz-Sáez, Juan Manuel
dc.contributor.authorRamírez-Aguilar, Francisco Javier 
dc.contributor.authorMartínez-Murcia, Francisco Jesús
dc.date.accessioned2023-11-21T11:11:06Z
dc.date.available2023-11-21T11:11:06Z
dc.date.created2023-11-01
dc.date.issued2018-01-01
dc.identifier.citationOrtiz A, Lozano F, Gorriz JM, Ramirez J, Martinez Murcia FJ; Alzheimer's Disease Neuroimaging Initiative. Discriminative Sparse Features for Alzheimer's Disease Diagnosis Using Multimodal Image Data. Curr Alzheimer Res. 2018;15(1):67-79. doi: 10.2174/1567205014666170922101135. PMID: 28934923.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28093
dc.description.abstractFeature extraction in medical image processing still remains a challenge, especially in high-dimensionality datasets, where the expected number of available samples is considerably lower than the dimension of the feature space. This is a common problem in real-world data, and, specifically, in medical image processing as, while images are composed of hundreds of thousands voxels, only a reduced number of patients are available. Extracting descriptive and discriminative features allows representing each sample by a small number of features, which is particularly important in classification task, due to the curse of dimensionality problem. In this paper we solve this recognition problem by means of sparse representations of the data, which also provides an arena to multimodal image (PET and MRI) data classification by combining specialized classifiers. Thus, a novel method to effectively combine SVC classifiers is presented here, which uses the distance to the hyperplane computed for each class in each classifier allowing to select the most discriminative image modality in each case. The discriminative power of each modality also provides information about the illness evolution; while functional changes are clearly found in Alzheimer’s diagnosed patients (AD) when compared to control subjects (CN), structural changes seem to be more relevant at the early stages of the illness, affecting Mild Cognitive Impairment (MCI) patients. Finally, classification experiments using 68 CN, 70 AD and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method. Accuracy values of up to 92% and 79% for CN/AD and CN/MCI classification are achieved.es_ES
dc.description.sponsorshipThis work was partly supported by the MINECO/FEDER under TEC2015-64718-R and PSI2015-65848- R projects and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.es_ES
dc.language.isoenges_ES
dc.publisherBentham Sciencees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAlzheimer, Enfermedad de - Diagnóstico por imagen - Proceso de datoses_ES
dc.subjectDiagnóstico - Proceso de datoses_ES
dc.subjectMedicina - Proceso de datoses_ES
dc.subject.otherADNIes_ES
dc.subject.otherSparse featureses_ES
dc.subject.otherComputer aided diagnosises_ES
dc.subject.otherMild cognitive impairmentes_ES
dc.subject.otherMultimodel dataes_ES
dc.subject.otherSupport vector classifierses_ES
dc.titleDiscriminative Sparse Features for Alzheimer’s Disease Diagnosis using multimodal image data.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.2174/1567205014666170922101135
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.departamentoIngeniería de Comunicaciones


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional