Mostrar el registro sencillo del ítem

dc.contributor.authorDanchev, Peter
dc.contributor.authorGarcía González, Esther
dc.contributor.authorGómez-Lozano, Miguel Ángel 
dc.date.accessioned2023-11-10T11:34:40Z
dc.date.available2023-11-10T11:34:40Z
dc.date.created2023
dc.date.issued2023-08-24
dc.identifier.citationDanchev, Peter & García, Esther & Lozano, Miguel. (2023). Decompositions of matrices into a sum of invertible matrices and matrices of fixed nilpotence. The Electronic Journal of Linear Algebra. 39. 460-471. 10.13001/ela.2023.7851.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27992
dc.description.abstractFor any n ≥ 2 and fixed k ≥ 1, we give necessary and sufficient conditions for an arbitrary nonzero square matrix in the matrix ring Mn(F) to be written as a sum of an invertible matrix U and a nilpotent matrix N with Nk = 0 over an arbitrary field F.es_ES
dc.description.sponsorshipThe first-named author (Peter V. Danchev) was supported in part by the Bulgarian National Science Fund under Grant KP-06 No. 32/1 of December 07, 2019, as well as by the BIDEB 2221 of TÜBÍTAK, the second-named author (Esther García) was partially supported by Ayuda Puente 2022, URJC. The three authors were partially supported by the Junta de Andalucía FQM264.es_ES
dc.language.isoenges_ES
dc.publisherInternational Linear Algebra Societyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGrupos nilpotenteses_ES
dc.subjectAlgebra lineales_ES
dc.subjectMatrices (Matemáticas)es_ES
dc.subject.otherMatriceses_ES
dc.subject.otherNilpotentses_ES
dc.subject.otherUnitses_ES
dc.subject.otherRankses_ES
dc.titleDecompositions of matrices into a sum of invertible matrices and matrices of fixed nilpotence.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.13001/ela.2023.7851
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional