Mostrar el registro sencillo del ítem
Performance and durability of non-stick coatings applied to stainless steel: Subtractive vs additive manufacturing.
dc.contributor.author | Guerrero-Vacas, Guillermo Rafael | |
dc.contributor.author | Rodríguez Alabanda, Óscar | |
dc.contributor.author | Martín-Fernández, Francisco de Sales | |
dc.contributor.author | Martín-Sánchez, María Jesús | |
dc.date.accessioned | 2023-10-04T09:13:21Z | |
dc.date.available | 2023-10-04T09:13:21Z | |
dc.date.issued | 2023-08-26 | |
dc.identifier.citation | Guerrero-Vacas, G.; Rodríguez-Alabanda, O.; Martín-Fernández, F.d.S.; Martín-Sánchez, M.J. Performance and Durability of Non-Stick Coatings Applied to Stainless Steel: Subtractive vs. Additive Manufacturing. Materials 2023, 16, 5851. https://doi.org/10.3390/ ma16175851 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/27740 | |
dc.description.abstract | This study compares subtractive manufacturing (SM) and additive manufacturing (AM) techniques in the production of stainless-steel parts with non-stick coatings. While subtractive manufacturing involves the machining of rolled products, additive manufacturing employs the FFF (fused filament fabrication) technique with metal filament and sintering. The applied non-stick coatings are commercially available and are manually sprayed with a spray gun, followed by a curing process. They are an FEP (fluorinated ethylene propylene)-based coating and a sol–gel ceramic coating. Key properties such as surface roughness, water droplet sliding angle, adhesion to the substrate and wear resistance were examined using abrasive blasting techniques. In the additive manufacturing process, a higher roughness of the samples was detected. In terms of sliding angle, variations were observed in the FEP-based coatings and no variations were observed in the ceramic coatings, with a slight increase for FEP in AM. In terms of adhesion to the substrate, the ceramic coatings applied in the additive process showed a superior behavior to that of subtractive manufacturing. On the other hand, FEP coatings showed comparable results for both techniques. In the wear resistance test, ceramic coatings outperformed FEP coatings for both techniques. In summary, additive manufacturing of non-stick coatings on stainless steel showed remarkable advantages in terms of roughness, adhesion and wear resistance compared to the conventional manufacturing approach. These results are of relevance in fields such as medicine, food industry, chemical industry and marine applications. | es_ES |
dc.description.sponsorship | Partial funding for open access charge: Universidad de Málaga. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Acero inoxidable - Fabricación | es_ES |
dc.subject | Impresión 3D | es_ES |
dc.subject.other | Anti-adherent coatings | es_ES |
dc.subject.other | Stainless steel | es_ES |
dc.subject.other | Conventional manufacturing | es_ES |
dc.subject.other | Additive manufacturing | es_ES |
dc.subject.other | Adhesion | es_ES |
dc.subject.other | Substrates | es_ES |
dc.title | Performance and durability of non-stick coatings applied to stainless steel: Subtractive vs additive manufacturing. | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.centro | Escuela de Ingenierías Industriales | es_ES |
dc.identifier.doi | 10.3390/ma16175851 | |
dc.rights.cc | Atribución 4.0 Internacional | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es_ES |