Mostrar el registro sencillo del ítem

dc.contributor.authorPaz-García, Juan Manuel 
dc.contributor.authorCerrillo-González, María del Mar
dc.contributor.authorVillén-Guzmán, María Dolores 
dc.contributor.authorRodríguez-Maroto, José Miguel 
dc.date.accessioned2023-09-29T09:57:42Z
dc.date.available2023-09-29T09:57:42Z
dc.date.created2023-09
dc.date.issued2023
dc.identifier.urihttps://hdl.handle.net/10630/27701
dc.description.abstractElectrolyzers are used to produce hydrogen and oxygen from electricity through water electrolysis. If the electricity comes from renewable sources, such as solar energy, the produced hydrogen, denoted as green-H2. Despite often forgotten, electrolyzers also produce pure O2, which has many different uses. E.g., in oxy-combustion processes. The storage and transport systems for H2 are problematic. they require high pressures and are susceptible of leakage and other losses. Hydrogen Fuel Cells use H2 to produce electricity, following the reversed operation than electrolyzers. Fuel Cells have high energy conversion efficiencies. Fuel Cells / electrolyzers with a polymer electrolyte membrane (PEM) are based on a cation exchange membrane that allows the transport of protons. It is possible to create a reversible device that can act as fuel cell or electrolyzer depending on the directions of the electrical and gas currents. A multiphysics model for a reversible PEM Electrolyzer – Fuel Cell has been implemented and solved. The model combines fluid dynamics to model the inflow/outflow of liquid and gasses: water, hydrogen, Oxygen, and Nitrogen. The model considers the relationship between the electrochemical reactions and the external electrical circuit, quantifying the electrical efficiency of the electrochemical device and the relationship with the extent of the reactions. In addition to this, the model addresses the two-directional coupling with temperature. I.e., the model includes the heat source due to activation and ohmic losses and the effect of the temperature on the efficiency of the hydrogen production. Results show that it is theoretically feasible to use reversible electrolyzers – fuel cells devices for the efficient production and utilization of green hydrogen.es_ES
dc.description.sponsorshipII Plan Propio de Investigación y Transferencia de la Universidad de Málaga. Ayudas a proyectos para la transición ecológica y digital: TED2021-130756B-C31 Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPilas de combustiblees_ES
dc.subjectElectrólisises_ES
dc.subject.otherElectrolyzerses_ES
dc.subject.otherMultiphysicses_ES
dc.subject.otherFuel cellses_ES
dc.titleMultiphysics Modeling of a reversible PEM Electrolyzer & Fuel Cell.es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroFacultad de Cienciases_ES
dc.relation.eventtitleThe 74th Annual Meeting of the International Society of Electrochemistryes_ES
dc.relation.eventplaceLyon, Franciaes_ES
dc.relation.eventdate3 de septiembre de 2023es_ES
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional