JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Clinical text classification in Cancer Real-World Data in Spanish

    • Autor
      Moreno-Barea, Francisco J.; Mesa, Héctor; Ribelles, Nuria; Alba-Conejo, EmilioAutoridad Universidad de Málaga; Jerez-Aragonés, José ManuelAutoridad Universidad de Málaga
    • Fecha
      2023-06-29
    • Resumen
      Healthcare systems currently store a large amount of clinical data, mostly unstructured textual information, such as electronic health records (EHRs). Manually extracting valuable information from these documents is costly for healthcare professionals. For example, when a patient first arrives at an oncology clinical analysis unit, clinical staff must extract information about the type of neoplasm in order to assign the appropriate clinical specialist. Automating this task is equivalent to text classification in natural language processing (NLP). In this study, we have attempted to extract the neoplasm type by processing Spanish clinical documents. A private corpus of 23, 704 real clinical cases has been processed to extract the three most common types of neoplasms in the Spanish territory: breast, lung and colorectal neoplasms. We have developed methodologies based on state-of-the-art text classification task, strategies based on machine learning and bag-of-words, based on embedding models in a supervised task, and based on bidirectional recurrent neural networks with convolutional layers (C-BiRNN). The results obtained show that the application of NLP methods is extremely helpful in performing the task of neoplasm type extraction. In particular, the 2-BiGRU model with convolutional layer and pre-trained fastText embedding obtained the best performance, with a macro-average, more representative than the micro-average due to the unbalanced data, of 0.981 for precision, 0.984 for recall and 0.982 for F1-score.
    • URI
      https://hdl.handle.net/10630/27352
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Moreno-Barea et al. 2023 - Clinical Text Classification in Cancer Real-World Data in Spanish. In Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Spriger, Cham.pdf (274.7Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA