Mostrar el registro sencillo del ítem
A Semi-Supervised Location-Aware Anomaly Detection Method for Ultra-Dense Indoor Scenarios.
dc.contributor.author | Villegas Carrasco, Javier | |
dc.contributor.author | Fortes-Rodríguez, Sergio | |
dc.contributor.author | Barco-Moreno, Raquel | |
dc.date.accessioned | 2023-06-23T06:46:25Z | |
dc.date.available | 2023-06-23T06:46:25Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://hdl.handle.net/10630/27055 | |
dc.description.abstract | Over the past few years, indoor cellular deployments have been on the rise. These scenarios are characterized by their user density and fast-changing conditions, thus, being prone to failures. Moreover, the steady development of indoor and outdoor positioning techniques is expected to provide a reliable source of information. Thus, the availability of user location is being considered to be a key enabler to improve the resilience and performance of automatic failure management and optimization techniques. Taking this into consideration, the present work proposes a semi-supervised location-aware anomaly detection method for the management of failures such as cell outages and interference problems. | es_ES |
dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
dc.language.iso | eng | es_ES |
dc.subject | Telecomunicaciones | es_ES |
dc.subject.other | Semi-Supervised | es_ES |
dc.subject.other | Location-Aware | es_ES |
dc.subject.other | Anomaly Detection | es_ES |
dc.subject.other | Cellular networks | es_ES |
dc.title | A Semi-Supervised Location-Aware Anomaly Detection Method for Ultra-Dense Indoor Scenarios. | es_ES |
dc.type | conference output | es_ES |
dc.centro | E.T.S.I. Telecomunicación | es_ES |
dc.relation.eventtitle | 2023 EuCNC & 6G Summit | es_ES |
dc.relation.eventplace | Gotemburgo | es_ES |
dc.relation.eventdate | 06/06/2023 | es_ES |
dc.departamento | Ingeniería de Comunicaciones | |
dc.rights.accessRights | open access | es_ES |