Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez-Rodríguez, Ignacio
dc.contributor.authorCampo-Valera, María
dc.contributor.authorRodríguez, José-Víctor
dc.contributor.authorFrisa-Rubio, Alberto
dc.date.accessioned2023-06-19T11:43:43Z
dc.date.available2023-06-19T11:43:43Z
dc.date.created2023-06-19
dc.date.issued2023-03-31
dc.identifier.citationRodríguez-Rodríguez I, Campo-Valera M, Rodríguez J-V, Frisa-Rubio A. Constrained IoT-Based Machine Learning for Accurate Glycemia Forecasting in Type 1 Diabetes Patients. Sensors. 2023; 23(7):3665. https://doi.org/10.3390/s23073665es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27002
dc.description.abstractIndividuals with diabetes mellitus type 1 (DM1) tend to check their blood sugar levels multiple times daily and utilize this information to predict their future glycemic levels. Based on these predictions, patients decide on the best approach to regulate their glucose levels with considerations such as insulin dosage and other related factors. Nevertheless, modern developments in Internet of Things (IoT) technology and innovative biomedical sensors have enabled the constant gathering of glucose level data using continuous glucose monitoring (CGM) in addition to other biomedical signals. With the use of machine learning (ML) algorithms, glycemic level patterns can be modeled, enabling accurate forecasting of this variable. Constrained devices have limited computational power, making it challenging to run complex machine learning algorithms directly on these devices. However, by leveraging edge computing, using lightweight machine learning algorithms, and performing preprocessing and feature extraction, it is possible to run machine learning algorithms on constrained devices despite these limitations. In this paper we test the burdens of some constrained IoT devices, probing that it is feasible to locally predict glycemia using a smartphone, up to 45 min in advance and with acceptable accuracy using random forest.es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDiabetes - Complicaciones y secuelas - Prevención - Recursos en Internetes_ES
dc.subjectGlucemia - Medición - Recursos en Internetes_ES
dc.subject.otherConstrained deviceses_ES
dc.subject.otherDiabeteses_ES
dc.subject.otherIoTes_ES
dc.subject.otherMonitoringes_ES
dc.subject.otherMachine learninges_ES
dc.titleConstrained IoT-based machine learning for accurate glycemia forecasting in Type 1 Diabetes patientses_ES
dc.typejournal articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.3390/s23073665
dc.type.hasVersionVoRes_ES
dc.departamentoIngeniería de Comunicaciones
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem