Mostrar el registro sencillo del ítem

dc.contributor.authorBiró, Attila
dc.contributor.authorSzilágyi, Sándor Miklós
dc.contributor.authorSzilágyi, László
dc.contributor.authorMartín-Martín, Jaime 
dc.contributor.authorCuesta-Vargas, Antonio 
dc.date.accessioned2023-06-06T07:59:38Z
dc.date.available2023-06-06T07:59:38Z
dc.date.created2023-06-06
dc.date.issued2023-03-30
dc.identifier.citationBiró A, Szilágyi SM, Szilágyi L, Martín-Martín J, Cuesta-Vargas AI. Machine Learning on Prediction of Relative Physical Activity Intensity Using Medical Radar Sensor and 3D Accelerometer. Sensors. 2023; 23(7):3595. https://doi.org/10.3390/s23073595es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26804
dc.description.abstractBackground: One of the most critical topics in sports safety today is the reduction in injury risks through controlled fatigue using non-invasive athlete monitoring. Due to the risk of injuries, it is prohibited to use accelerometer-based smart trackers, activity measurement bracelets, and smart watches for recording health parameters during performance sports activities. This study analyzes the synergy feasibility of medical radar sensors and tri-axial acceleration sensor data to predict physical activity key performance indexes in performance sports by using machine learning (ML). The novelty of this method is that it uses a 24 GHz Doppler radar sensor to detect vital signs such as the heartbeat and breathing without touching the person and to predict the intensity of physical activity, combined with the acceleration data from 3D accelerometers. Methods: This study is based on the data collected from professional athletes and freely available datasets created for research purposes. A combination of sensor data management was used: a medical radar sensor with no-contact remote sensing to measure the heart rate (HR) and 3D acceleration to measure the velocity of the activity. Various advanced ML methods and models were employed on the top of sensors to analyze the vital parameters and predict the health activity key performance indexes. three-axial acceleration, heart rate data, age, as well as activity level variances. Results: The ML models recognized the physical activity intensity and estimated the energy expenditure on a realistic level. Leave-one-out (LOO) cross-validation (CV), as well as out-of-sample testing (OST) methods, have been used to evaluate the level of accuracy in activity intensity prediction. The energy expenditure prediction with three-axial accelerometer sensors by using linear regression provided 97–99% accuracy on selected sports (cycling, running, and soccer). [...]es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFatiga (Fisiología) -- Mediciónes_ES
dc.subjectDeportes -- Aspectos fisiológicos -- Mediciónes_ES
dc.subjectMedicina deportivaes_ES
dc.subjectDeportes -- Fisioterapiaes_ES
dc.subject.otherMedical radares_ES
dc.subject.otherSession rating of perceived exertiones_ES
dc.subject.otherDistant sensing in sportses_ES
dc.subject.otherFatigue controles_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherAssessmentes_ES
dc.titleMachine learning on prediction of relative physical activity intensity using medical radar sensor and 3D accelerometeres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Ciencias de la Saludes_ES
dc.identifier.doi10.3390/s23073595
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional