JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Irregular alignment of arbitrarily long DNA sequences on GPU

    • Autor
      Perez-Wohlfeil, Esteban; Trelles-Salazar, Oswaldo RogelioAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga
    • Fecha
      2022-12-22
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      ADN; Microprocesadores -- Programación
    • Resumen
      The use of Graphics Processing Units to accelerate computational applications is increasingly being adopted due to its affordability, flexibility and performance. However, achieving top performance comes at the price of restricted data-parallelism models. In the case of sequence alignment, most GPU-based approaches focus on accelerating the Smith-Waterman dynamic programming algorithm due to its regularity. Nevertheless, because of its quadratic complexity, it becomes impractical when comparing long sequences, and therefore heuristic methods are required to reduce the search space. We present GPUGECKO, a CUDA implementation for the sequential, seed-and-extend sequence-comparison algorithm, GECKO. Our proposal includes optimized kernels based on collective operations capable of producing arbitrarily long alignments while dealing with heterogeneous and unpredictable load. Contrary to other state-of-the-art methods, GPUGECKO employs a batching mechanism that prevents memory exhaustion by not requiring to fit all alignments at once into the device memory, therefore enabling to run massive comparisons exhaustively with improved sensitivity while also providing up to 6x average speedup w.r.t. the CUDA acceleration of BLASTN.
    • URI
      https://hdl.handle.net/10630/26508
    • DOI
      https://dx.doi.org/10.1007/s11227-022-05007-z
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    s11227-022-05007-z.pdf (1.719Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA