Mostrar el registro sencillo del ítem

dc.contributor.authorCámara-Moreno, Javier 
dc.contributor.authorWohlrab, Rebekka
dc.contributor.authorGarlan, David
dc.contributor.authorSchmerl, Bradley
dc.date.accessioned2023-04-25T06:23:10Z
dc.date.available2023-04-25T06:23:10Z
dc.date.created2023-04-24
dc.date.issued2022-12-19
dc.identifier.citationCámara, J., Wohlrab, R., Garlan, D., & Schmerl, B. (2023). ExTrA: Explaining architectural design tradeoff spaces via dimensionality reduction. Journal of Systems and Software, 198, 111578.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26398
dc.description.abstractIn software design, guaranteeing the correctness of run-time system behavior while achieving an acceptable balance among multiple quality attributes remains a challenging problem. Moreover, providing guarantees about the satisfaction of those requirements when systems are subject to uncertain environments is even more challenging. While recent developments in architectural analysis techniques can assist architects in exploring the satisfaction of quantitative guarantees across the design space, existing approaches are still limited because they do not explicitly link design decisions to satisfaction of quality requirements. Furthermore, the amount of information they yield can be overwhelming to a human designer, making it difficult to see the forest for the trees. In this paper we present ExTrA (Explaining Tradeoffs of software Architecture design spaces), an approach to analyzing architectural design spaces that addresses these limitations and provides a basis for explaining design tradeoffs. Our approach employs dimensionality reduction techniques employed in machine learning pipelines like Principal Component Analysis (PCA) and Decision Tree Learning (DTL) to enable architects to understand how design decisions contribute to the satisfaction of extra-functional properties across the design space. Our results show feasibility of the approach in two case studies and evidence that combining complementary techniques like PCA and DTL is a viable approach to facilitate comprehension of tradeoffs in poorly-understood design spaces.es_ES
dc.description.sponsorshipThis work was partially supported by the Spanish Government (FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación) under project COSCA (PGC2018-094905-B-I00), by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, Sweden, by award N00014172899 from the Office of Naval Research, United States of America, and the NSA, United States of America under Award No. H9823018D0008. Any views, opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views the funding agencies. // Funding for open access charge: Universidad de Málaga / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiseño arquitectónicoes_ES
dc.subjectIngeniería del softwarees_ES
dc.subject.otherTradeoff analysises_ES
dc.subject.otherUncertaintyes_ES
dc.subject.otherDimensionality reductiones_ES
dc.titleExTrA: Explaining architectural design tradeoff spaces via dimensionality reduction.es_ES
dc.typejournal articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doihttps://doi.org/10.1016/j.jss.2022.111578
dc.type.hasVersionVoRes_ES
dc.departamentoLenguajes y Ciencias de la Computación
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem