Mostrar el registro sencillo del ítem

dc.contributor.authorTorres-Liñán, Javier 
dc.contributor.authorRuiz-Rosas, Ramiro Rafael 
dc.contributor.authorRosas-Martínez, Juana María 
dc.contributor.authorRodríguez-Mirasol, José 
dc.contributor.authorCordero-Alcántara, Tomás 
dc.date.accessioned2023-04-21T12:13:17Z
dc.date.available2023-04-21T12:13:17Z
dc.date.issued2022-01-13
dc.identifier.citationTorres-Liñán J, Ruiz-Rosas R, Rosas JM, Rodríguez-Mirasol J, Cordero T. A Kinetic Model Considering Catalyst Deactivation for Methanol-to-Dimethyl Ether on a Biomass-Derived Zr/P-Carbon Catalyst. Materials. 2022; 15(2):596. https://doi.org/10.3390/ma15020596es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26360
dc.description.abstractA Zr-loaded P-containing biomass-derived activated carbon (ACPZr) has been tested for methanol dehydration between 450 and 550 °C. At earlier stages, methanol conversion was complete, and the reaction product was mainly dimethyl ether (DME), although coke, methane, hydrogen and CO were also observed to a lesser extent. The catalyst was slowly deactivated with time-on-stream (TOS), but maintained a high selectivity to DME (>80%), with a higher yield to this product than 20% for more than 24 h at 500 °C. A kinetic model was developed for methanol dehydration reaction, which included the effect of the inhibition of water and the deactivation of the catalyst by coke. The study of stoichiometric rates pointed out that coke could be produced through a formaldehyde intermediate, which might, alternatively, decompose into CO and H2. On the other hand, the presence of 10% water in the feed did not affect the rate of coke formation, but produced a reduction of 50% in the DME yield, suggesting a reversible competitive adsorption of water. A Langmuir–Hinshelwood reaction mechanism was used to develop a kinetic model that considered the deactivation of the catalyst. Activation energy values of 65 and 51 kJ/mol were obtained for DME and methane production in the temperature range from 450 °C to 550 °C. On the other hand, coke formation as a function of time on stream (TOS) was also modelled and used as the input for the deactivation function of the model, which allowed for the successful prediction of the DME, CH4 and CO yields in the whole evaluated TOS interval.es_ES
dc.description.sponsorshipThis research was supported by the Spanish Ministry of Science, Innovation and Universities and Junta de Andalucia through RTI2018-097555-B-I00 and UMA18-FEDERJA-110 projects, respectively. J.T.-L. also acknowledges the assistance of the Spanish Ministry of Economy, Industry and Competitiveness for the award of a predoctoral contract to become a Ph.D. (BES-2016-079237). Partial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherIOAP-MDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherMethanol dehydrationes_ES
dc.subject.otherDimethyl etheres_ES
dc.subject.otherBiomass-derived carbones_ES
dc.subject.otherZirconium phosphatees_ES
dc.subject.otherkinetic modellinges_ES
dc.subject.otherDeactivationes_ES
dc.titleA Kinetic Model Considering Catalyst Deactivation for Methanol-to-Dimethyl Ether on a Biomass-Derived Zr/P-Carbon Catalystes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.3390/ma15020596
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional