Mostrar el registro sencillo del ítem

dc.contributor.authorGaleano-Brajones, Jesús
dc.contributor.authorLuna-Valero, Francisco 
dc.contributor.authorCarmona Murillo, Javier
dc.contributor.authorZapata Cano, Pablo Helio
dc.contributor.authorValenzuela-Valdés, Juan Francisco
dc.date.accessioned2023-04-21T08:02:23Z
dc.date.available2023-04-21T08:02:23Z
dc.date.issued2023
dc.identifier.citationJesús Galeano-Brajones, Francisco Luna-Valero, Javier Carmona-Murillo, Pablo H. Zapata Cano, Juan F. Valenzuela-Valdés, Designing problem-specific operators for solving the Cell Switch-Off problem in ultra-dense 5G networks with hybrid MOEAs, Swarm and Evolutionary Computation, Volume 78, 2023, 101290, ISSN 2210-6502, https://doi.org/10.1016/j.swevo.2023.101290.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26338
dc.description.abstractThe massive deployment of base stations is one of the key pillars of the fifth generation (5G) of mobile communications. However, this network densification entails high energy consumption that must be addressed to enhance the sustainability of this industry. This work faces this problem from a multi-objective optimization perspective, in which both energy efficiency and quality of service criteria are taken into account. To do so, several newly problem-specific operators have been designed so as to engineer hybrid multi-objective evolutionary metaheuristics (MOEAs) that bring expert knowledge of the domain to the search of the algorithms. These hybrid approaches have been able to improve upon canonical versions of the algorithms, clearly showing the contributions of our approach. Furthermore, this paper tests the hypothesis that the hybridization using several of those problem-specific operators simultaneously can enhance the search of MOEAs that are endowed only with a single one.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA This work has been partially funded by the Spanish Ministry of Science and Innovation via grant PID2020-112545RB-C54, by the European Union NextGenerationEU/PRTR under grants TED2021-131699B-I00 and TED2021-129938B-I00 (MCIN/AEI/10.13039/501100011033, FEDER) and the Andalusian PAIDI program with grants A-TIC-608-UGR20, P18.RT.4830, and PYC20-RE-012-UGR. The authors also thank the Supercomputing and Bioinformatics Center of the Universidad de Málaga, for providing its services and the Picasso supercomputer facilities to perform the experiments (http://www.scbi.uma.es/). Funding for open access charge: Universidad de Málaga/CBUA.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOptimización multidisciplinares_ES
dc.subject.otherProblem-specific operatorses_ES
dc.subject.otherHybridizationes_ES
dc.subject.otherMulti-objective optimizationes_ES
dc.subject.otherUltra-dense networkses_ES
dc.subject.other5Ges_ES
dc.titleDesigning problem-specific operators for solving the Cell Switch-Off problem in ultra-dense 5G networks with hybrid MOEAses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doihttps://doi.org/10.1016/j.swevo.2023.101290
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional