Mostrar el registro sencillo del ítem

dc.contributor.authorChaves García, Antonio Jesús
dc.contributor.authorMartín-Fernández, Cristian 
dc.contributor.authorDíaz-Rodríguez, Manuel 
dc.date.accessioned2023-04-20T10:58:50Z
dc.date.available2023-04-20T10:58:50Z
dc.date.issued2023
dc.identifier.citationChaves, A. J., Martín, C., & Díaz, M. (2023). The orchestration of Machine Learning frameworks with data streams and GPU acceleration in Kafka-ML: A deep-learning performance comparative. Expert Systems, e13287. https://doi.org/10.1111/exsy.13287es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26316
dc.description.abstractMachine Learning (ML) applications need large volumes of data to train their modelsso that they can make high-quality predictions. Given digital revolution enablers suchas the Internet of Things (IoT) and the Industry 4.0, this information is generated inlarge quantities in terms of continuous data streams and not in terms of staticdatasets as it is the case with most AI (Artificial Intelligence) frameworks. Kafka-ML isa novel open-source framework that allows the complete management of ML/AIpipelines through data streams. In this article, we present new features for the Kafka-ML framework, such as the support for the well-known ML/AI framework PyTorch,as well as for GPU acceleration at different points along the pipeline. This pipelinewill be described by taking a real Industry 4.0 use case in the Petrochemical Industry.Finally, a comprehensive evaluation with state-of-the-art deep learning models willbe carried out to demonstrate the feasibility of the platform.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía; European Commission; Ministerio de Ciencia, Innovación y Universidades. This work is funded by the Spanish projects RT2018-099777-B-100 (‘rFOG: Improving Latency and Reliability of Offloaded Computation to theFOG for Critical Services’), PY20_00788 (‘IntegraDos: Providing Real-Time Services for the Internet of Things through Cloud Sensor Integration’),TSI-063000-2021-116 (‘Digital vertical twins for B5G/6G networks’), TED2021-130167B-C33 (‘GEDIER: Application of Digital Twins to moresustainable irrigated farms’), and CPP2021-009032(‘ZeroVision: Enabling Zero impact wastewater treatment through Computer Vision and Fed-erated AI’); and the European project LIFEWATCH-2019-11-UMA-01-BD (‘EnBiC2-Lab - Environmental and Biodiversity Climate Change Lab’).This project has received funding from the European Union's Horizon Europe research and innovation proframme under the Marie Skłodowska-Curie grant agreement No 101086218. Funding for open access charge: Universidad de Málaga / CBUA.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial) - Aplicacioneses_ES
dc.subject.otherArtificial intelligencees_ES
dc.subject.otherData streamses_ES
dc.subject.otherKafka-MLes_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherPyTorches_ES
dc.subject.otherTensorFlowes_ES
dc.titleThe orchestration of Machine Learning frameworks with datastreams and GPU acceleration in Kafka-ML: A deep-learning performance comparativees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doihttps://doi.org/10.1111/exsy.13287
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional