Mostrar el registro sencillo del ítem

dc.contributor.authorMunilla-Fajardo, Jorge 
dc.contributor.authorAl-Safi, Haedar E. S.
dc.contributor.authorOrtiz-García, Andrés 
dc.contributor.authorLuque-Vilaseca, Juan Luis 
dc.date.accessioned2023-04-20T09:32:58Z
dc.date.available2023-04-20T09:32:58Z
dc.date.issued2023
dc.identifier.citationMunilla, J., Al-Safi, H.E.S., Ortiz, A. et al. Hybrid Genetic Algorithm for Clustering IC Topographies of EEGs. Brain Topogr (2023). https://doi.org/10.1007/s10548-023-00947-yes_ES
dc.identifier.urihttps://hdl.handle.net/10630/26311
dc.description.abstractClustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA Funding for open access publishing: Universidad Málaga/CBUA. This work was supported by projects PGC2018-098,813-B C32 (Spanish “Ministerio de Ciencia, Innovación y Universidades”), UMA20-FEDERJA-086 (Consejería de economía y conocimiento, Junta de Andalucía), Project P18-rt-1624, and by European Regional Development Funds (ERDF). We also thank the Leeduca research group and Junta de Andalucía for the data supplied and the support.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAlgoritmos genéticoses_ES
dc.subjectEncefalografíaes_ES
dc.subject.otherClusteringes_ES
dc.subject.otherEEGes_ES
dc.subject.otherICAes_ES
dc.subject.otherGAes_ES
dc.titleHybrid genetic algorithm for clustering IC topographies of EEGses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doihttps://doi.org/10.1007/s10548-023-00947-y
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional