Mostrar el registro sencillo del ítem

dc.contributor.authorShaukat, Nabil
dc.contributor.authorAli, Ahmed
dc.contributor.authorJaved Iqbal, Muhammad
dc.contributor.authorMoinuddin, Muhammad
dc.contributor.authorOtero-Roth, Pablo 
dc.date.accessioned2023-03-08T12:41:57Z
dc.date.available2023-03-08T12:41:57Z
dc.date.issued2021-02-06
dc.identifier.citationShaukat N, Ali A, Javed Iqbal M, Moinuddin M, Otero P. Multi-Sensor Fusion for Underwater Vehicle Localization by Augmentation of RBF Neural Network and Error-State Kalman Filter. Sensors. 2021; 21(4):1149. https://doi.org/10.3390/s21041149es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26108
dc.description.abstractThe Kalman filter variants extended Kalman filter (EKF) and error-state Kalman filter (ESKF) are widely used in underwater multi-sensor fusion applications for localization and navigation. Since these filters are designed by employing first-order Taylor series approximation in the error covariance matrix, they result in a decrease in estimation accuracy under high nonlinearity. In order to address this problem, we proposed a novel multi-sensor fusion algorithm for underwater vehicle localization that improves state estimation by augmentation of the radial basis function (RBF) neural network with ESKF. In the proposed algorithm, the RBF neural network is utilized to compensate the lack of ESKF performance by improving the innovation error term. The weights and centers of the RBF neural network are designed by minimizing the estimation mean square error (MSE) using the steepest descent optimization approach. To test the performance, the proposed RBF-augmented ESKF multi-sensor fusion was compared with the conventional ESKF under three different realistic scenarios using Monte Carlo simulations. We found that our proposed method provides better navigation and localization results despite high nonlinearity, modeling uncertainty, and external disturbances.es_ES
dc.description.sponsorshipThis research was partially funded by the Campus de Excelencia Internacional Andalucia Tech, University of Malaga, Malaga, Spain. Partial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherIOAP-MPDIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLocalizaciónes_ES
dc.subject.otherUnderwater vehiclees_ES
dc.subject.otherNavigationes_ES
dc.subject.otherMulti-sensor fusiones_ES
dc.subject.otherLocalizationes_ES
dc.subject.otherRBFes_ES
dc.subject.otherUnderwater roboticses_ES
dc.titleMulti-Sensor Fusion for Underwater Vehicle Localization by Augmentation of RBF Neural Network and Error-State Kalman Filteres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doihttps://doi.org/10.3390/s21041149
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional