Mostrar el registro sencillo del ítem

dc.contributor.authorTrujillo, José Antonio
dc.contributor.authorDe la Bandera Cascales, Isabel
dc.contributor.authorBurgueño Romero, Jesús
dc.contributor.authorPalacios, David
dc.contributor.authorBaena-Martínez, Eduardo 
dc.date.accessioned2023-02-15T07:57:14Z
dc.date.available2023-02-15T07:57:14Z
dc.date.issued2022-12-23
dc.identifier.citationTrujillo JA, de-la-Bandera I, Burgueño J, Palacios D, Baena E, Barco R. Active Learning Methodology for Expert-Assisted Anomaly Detection in Mobile Communications. Sensors. 2023; 23(1):126. https://doi.org/10.3390/s23010126es_ES
dc.identifier.urihttps://hdl.handle.net/10630/25959
dc.description.abstractDue to the great complexity, heterogeneity, and variety of services, anomaly detection is becoming an increasingly important challenge in the operation of new generations of mobile communications. In many cases, the underlying relationships between the multiplicity of parameters and factors that can cause anomalous behavior are only determined by human expert knowledge. On the other hand, although automatic algorithms have a great capacity to process multiple sources of information, they are not always able to correctly signal such abnormalities. In this sense, this paper proposes the integration of both components in a framework based on Active Learning that enables enhanced performance in anomaly detection tasks. A series of tests have been conducted using an online anomaly detection algorithm comparing the proposed solution with a method based on the algorithm output alone. The obtained results demonstrate that a hybrid anomaly detection model that automates part of the process and includes the knowledge of an expert following the described methodology yields increased performance.es_ES
dc.description.sponsorshipThis project is partially funded by the Junta de Andalucía through the UMA-CEIATECH-11 (DAMA-5G) project. It is also framed in the PENTA Excellence Project (P18-FR-4647) by the Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Regional Ministry of Economic Transformation, Industry, Knowledge and Universities), and in part by the European Union–Next Generation EU within the Framework of the Project “Massive AI for the Open RadIo b5G/6G Network (MAORI)”. Partial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherIOAP-MDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherActive learninges_ES
dc.subject.otherAnomaly detectiones_ES
dc.subject.other5Ges_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherSelf-organizing networkses_ES
dc.titleActive Learning Methodology for Expert-Assisted Anomaly Detection in Mobile Communicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doihttps://doi.org/10.3390/s23010126
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional