JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A high dimensional functional time series approach to evolution outlier detection for grouped smart meters

    • Autor
      Elías Fernández, Antonio; Morales-González, Juan MiguelAutoridad Universidad de Málaga; Pineda-Morente, SalvadorAutoridad Universidad de Málaga
    • Fecha
      2022-01-01
    • Editorial/Editor
      Taylor and Francis
    • Palabras clave
      Medición - Investigación
    • Resumen
      Smart metering infrastructures collect data almost continuously in the form of fine-grained long time series. These massive data series often have common daily patterns that are repeated between similar days or seasons and shared among grouped meters. Within this context, we propose an unsupervised method to highlight individuals with abnormal daily dependency patterns, which we term evolution outliers. To this end, we approach the problem from the standpoint of High Dimensional Functional Time Series and we use the concept of functional depth to exploit the dynamic group structure and isolate individual meters with a different evolution. The performance of the proposal is first evaluated empirically through a simulation exercise under different evolution scenarios. Subsequently, the importance and need for an evolution outlier detection method are shown by using actual smart-metering data corresponding to photo-voltaic energy generation and circuit voltage records. Here, our proposal detects outliers that might go unnoticed by other approaches of the literature that have demonstrated to be effective capturing magnitude and shape abnormalities.
    • URI
      https://hdl.handle.net/10630/25690
    • DOI
      https://dx.doi.org/10.1080/08982112.2022.2135009
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    A high dimensional functional time series approach to evolution outlier detection for grouped smart meters.pdf (3.338Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA