JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    On Using Perceptual Loss within the U-Net Architecture for the Semantic Inpainting of Textile Artefacts with Traditional Motifs

    • Autor
      Stoean, Catalin; Bacanin, Nebojsa; Stoean, Ruxandra; Ionescu, Leonard; Alecsa, Cristian; Hotoleanu, Mircea; Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga; Joya-Caparrós, GonzaloAutoridad Universidad de Málaga
    • Fecha
      2022
    • Editorial/Editor
      SYNACS Conference Publishing Service (CPS)
    • Palabras clave
      Materiales - Conservación
    • Resumen
      It is impressive when one gets to see a hundreds or thousands years old artefact exhibited in the museum, whose appearance seems to have been untouched by centuries. Its restoration had been in the hands of a multidisciplinary team of experts and it had undergone a series of complex procedures. To this end, computational approaches that can support in deciding the most visually appropriate inpainting for very degraded historical items would be helpful as a second objective opinion for the restorers. The present paper thus attempts to put forward a U-Net approach with a perceptual loss for the semantic inpainting of traditional Romanian vests. Images taken of pieces from the collection of the Oltenia Museum in Craiova, along with such images with garments from the Internet, have been given to the deep learning model. The resulting numerical error for inpainting the corrupted parts is adequately low, however the visual similarity still has to be improved by considering further possibilities for finer tuning.
    • URI
      https://hdl.handle.net/10630/25290
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Inpainting_SYNASC_OPERA_2022 (1).pdf (1.888Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA