JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Moving object detection in noisy video sequences using deep convolutional disentangled representations.

    • Autor
      García-González, Jorge; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2022
    • Palabras clave
      Procesado de imágenes
    • Resumen
      Noise robustness is crucial when approaching a moving de- tection problem since image noise is easily mistaken for movement. In order to deal with the noise, deep denoising autoencoders are commonly proposed to be applied on image patches with an inherent disadvantage with respect to the segmentation resolution. In this work, a fully convolutional autoencoder-based moving detection model is proposed in order to deal with noise with no patch extraction required. Different autoencoder structures and training strategies are also tested to get insights into the best network design ap- proach.
    • URI
      https://hdl.handle.net/10630/25286
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    icip_2022_preprint.pdf (337.1Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA