JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Unsupervised Appearance Map Abstraction for Indoor Visual Place Recognition With Mobile Robots

    • Autor
      Jaenal, Alberto; Moreno-Dueñas, Francisco ÁngelAutoridad Universidad de Málaga; González-Jiménez, Antonio JavierAutoridad Universidad de Málaga
    • Fecha
      2022-06-27
    • Editorial/Editor
      IEEE
    • Palabras clave
      Reconocimiento de formas (Informática)
    • Resumen
      Visual Place Recognition (VPR), the task of identifying the place where an image has been taken from, is at the core of important robotic problems as relocalization, loop-closure detection or topological navigation. Even for indoors, the focus of this work, VPR is challenging for a number of reasons, including real-time performance when dealing with large image databases (∼ 10^4 ) (probably captured by different robots), or the avoidance of Perceptual Aliasing in environments with repetitive structures and scenes. In this paper, we tackle these issues by proposing an off-line mapping technique that abstracts a dense database of georeferenced images without particular order into a Multivariate Gaussian Mixture Model, by creating soft clusters in terms of their similarity in both pose and appearance. This abstract representation is obtained through an Expectation-Maximization algorithm and plays the role of a simplified map. Since querying this map yields a probability of being in a cluster, we exploit this ”belief” within a Bayesian filter that regards previous query images and a topological map between clusters to perform more robust VPR. We evaluate our proposal in two different indoor datasets, demonstrating comparable VPR precision to querying the full database while incurring in shorter query times and handling Perceptual Aliasing for sequential navigation.
    • URI
      https://hdl.handle.net/10630/24935
    • DOI
      https://dx.doi.org/10.1109/LRA.2022.3186768
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    22-0801_03_MS.pdf (1.829Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA