JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Warm-starting constraint generation for mixed-integer optimization: A Machine Learning approach

    • Autor
      Jiménez-Cordero, María AsunciónAutoridad Universidad de Málaga; Morales-González, Juan MiguelAutoridad Universidad de Málaga; Pineda-Morente, SalvadorAutoridad Universidad de Málaga
    • Fecha
      2022-10-11
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Aprendizaje automático (Inteligencia artificial)
    • Resumen
      Mixed Integer Linear Programs (MILP) are well known to be NP-hard (Non-deterministic Polynomial-time hard) problems in general. Even though pure optimization-based methods, such as constraint generation, are guaranteed to provide an optimal solution if enough time is given, their use in online applications remains a great challenge due to their usual excessive time requirements. To alleviate their computational burden, some machine learning techniques (ML) have been proposed in the literature, using the information provided by previously solved MILP instances. Unfortunately, these techniques report a non-negligible percentage of infeasible or suboptimal instances. By linking mathematical optimization and machine learning, this paper proposes a novel approach that speeds up the traditional constraint generation method, preserving feasibility and optimality guarantees. In particular, we first identify offline the so-called invariant constraint set of past MILP instances. We then train (also offline) a machine learning method to learn an invariant constraint set as a function of the problem parameters of each instance. Next, we predict online an invariant constraint set of the new unseen MILP application and use it to initialize the constraint generation method. This warm-started strategy significantly reduces the number of iterations to reach optimality, and therefore, the computational burden to solve online each MILP problem is significantly reduced. Very importantly, all the feasibility and optimality theoretical guarantees of the traditional constraint generation method are inherited by our proposed methodology. The computational performance of the proposed approach is quantified through synthetic and real-life MILP applications.
    • URI
      https://hdl.handle.net/10630/24887
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.knosys.2022.109570
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0950705122007894-main.pdf (963.2Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA