Mostrar el registro sencillo del ítem
Bi-LSTM neural network for EEG-based error detection in musicians’ performance
dc.contributor.author | Ariza Cervera, Isaac | |
dc.contributor.author | Tardón-García, Lorenzo José | |
dc.contributor.author | Barbancho-Pérez, Ana María | |
dc.contributor.author | De Torres García, Irene | |
dc.contributor.author | Barbancho-Pérez, Isabel | |
dc.date.accessioned | 2022-07-08T10:01:31Z | |
dc.date.available | 2022-07-08T10:01:31Z | |
dc.date.issued | 2022-09 | |
dc.identifier.citation | Isaac Ariza, Lorenzo J. Tardón, Ana M. Barbancho, Irene De-Torres, Isabel Barbancho, Bi-LSTM neural network for EEG-based error detection in musicians’ performance, Biomedical Signal Processing and Control, Volume 78, 2022, 103885, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2022.103885. | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/24609 | |
dc.description.abstract | Electroencephalography (EEG) is a tool that allows us to analyze brain activity with high temporal resolution. These measures, combined with deep learning and digital signal processing, are widely used in neurological disorder detection and emotion and mental activity recognition. In this paper, a new method for mental activity recognition is presented: instantaneous frequency, spectral entropy and Mel-frequency cepstral coefficients (MFCC) are used to classify EEG signals using bidirectional LSTM neural networks. It is shown that this method can be used for intra-subject or inter-subject analysis and has been applied to error detection in musician performance reaching compelling accuracy. | es_ES |
dc.description.sponsorship | This work has been funded by Junta de Andalucía in the framework of Proyectos I+D+I en el marco del Programa Operativo FEDER Andalucia 2014–2020 under Project No.: UMA18-FEDERJA-023, Proyectos de I+D+i en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) under Project No.: PY20_00237 and Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tech . Funding for open access charge: Universidad de Málaga/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Electroencefalografía | es_ES |
dc.subject.other | Electroencephalogram (EEG) | es_ES |
dc.subject.other | Bidirectional Long Short Term Memory | es_ES |
dc.subject.other | (Bi-LSTM) network | es_ES |
dc.subject.other | Mel-Frequency Cepstral Coefficients (MFCC) | es_ES |
dc.subject.other | Musician performance | es_ES |
dc.title | Bi-LSTM neural network for EEG-based error detection in musicians’ performance | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.centro | E.T.S.I. Telecomunicación | es_ES |
dc.identifier.doi | https://doi.org/10.1016/j.bspc.2022.103885. | |
dc.rights.cc | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es_ES |