Mostrar el registro sencillo del ítem
Comparing and Tuning Machine Learning Algorithms to Predict Type 2 Diabetes Mellitus
dc.contributor.author | Aguilera-Venegas, Gabriel | |
dc.contributor.author | López-Molina, Amador | |
dc.contributor.author | Galán-García, José Luis | |
dc.contributor.author | Rojo-Martínez, Gemma | |
dc.date.accessioned | 2022-07-04T09:32:37Z | |
dc.date.available | 2022-07-04T09:32:37Z | |
dc.date.created | 2022-06 | |
dc.date.issued | 2022-06-13 | |
dc.identifier.uri | https://hdl.handle.net/10630/24533 | |
dc.description.abstract | The main goals of this work is to study and compare machine learning algorithms to predict the development of type 2 diabetes mellitus. Four classifi cation algorithms have been considered, studying and comparing the accuracy of each one to predict the incidence of type 2 diabetes mellitus seven years in advance. Specifically, the techniques studied are: Decision Tree, Random Forest, kNN (k-Nearest Neighbors) and Neural Networks. The study not only involves the comparison among these techniques, but also, the tuning of the meta-parameters in each algorithm. The algorithms have been implemented using the language R. The data base used is obtained from the nation-wide cohort di@bet.es study. The conclusions will include the accuracy of each algorithm and therefore the best technique for this problem. The best meta-parameters for each algorithm will be also provided. | es_ES |
dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | Diabetes | es_ES |
dc.subject.other | Machine Learning | es_ES |
dc.subject.other | Diabetes | es_ES |
dc.subject.other | Engineering | es_ES |
dc.title | Comparing and Tuning Machine Learning Algorithms to Predict Type 2 Diabetes Mellitus | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.centro | Escuela de Ingenierías Industriales | es_ES |
dc.relation.eventtitle | 8th European Seminar on Computing (ESCO 2022) | es_ES |
dc.relation.eventplace | Pilsen (Chequia) | es_ES |
dc.relation.eventdate | 13-06-2022 | es_ES |
dc.departamento | Matemática Aplicada |