Mostrar el registro sencillo del ítem

dc.contributor.authorAguilera-Venegas, Gabriel 
dc.contributor.authorLópez-Molina, Amador
dc.contributor.authorGalán-García, José Luis 
dc.contributor.authorRojo-Martínez, Gemma
dc.date.accessioned2022-07-04T09:32:37Z
dc.date.available2022-07-04T09:32:37Z
dc.date.created2022-06
dc.date.issued2022-06-13
dc.identifier.urihttps://hdl.handle.net/10630/24533
dc.description.abstractThe main goals of this work is to study and compare machine learning algorithms to predict the development of type 2 diabetes mellitus. Four classifi cation algorithms have been considered, studying and comparing the accuracy of each one to predict the incidence of type 2 diabetes mellitus seven years in advance. Specifically, the techniques studied are: Decision Tree, Random Forest, kNN (k-Nearest Neighbors) and Neural Networks. The study not only involves the comparison among these techniques, but also, the tuning of the meta-parameters in each algorithm. The algorithms have been implemented using the language R. The data base used is obtained from the nation-wide cohort di@bet.es study. The conclusions will include the accuracy of each algorithm and therefore the best technique for this problem. The best meta-parameters for each algorithm will be also provided.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Teches_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectDiabeteses_ES
dc.subject.otherMachine Learninges_ES
dc.subject.otherDiabeteses_ES
dc.subject.otherEngineeringes_ES
dc.titleComparing and Tuning Machine Learning Algorithms to Predict Type 2 Diabetes Mellituses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.relation.eventtitle8th European Seminar on Computing (ESCO 2022)es_ES
dc.relation.eventplacePilsen (Chequia)es_ES
dc.relation.eventdate13-06-2022es_ES
dc.departamentoMatemática Aplicada


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem