Mostrar el registro sencillo del ítem

dc.contributor.authorFélix, Yves
dc.contributor.authorFuentes Rumí, Mario
dc.contributor.authorMurillo-Mas, Aniceto 
dc.date.accessioned2022-06-09T12:18:09Z
dc.date.available2022-06-09T12:18:09Z
dc.date.issued2022-06-25
dc.identifier.citationFélix, Yves, Fuentes Rumí, Mario, Murillo-Mas, Aniceto; Lie models of homotopy automorphism monoids and classifying fibrations. Advances in Mathematics Volume 402, 25 June 2022, 108359. https://doi.org/10.1016/j.aim.2022.108359es_ES
dc.identifier.urihttps://hdl.handle.net/10630/24331
dc.description.abstractGiven X a finite nilpotent simplicial set, consider the classifying fibrations X → B aut∗ G(X) → B autG(X) and X → Z → B aut∗ π (X) where G and π denote, respectively, subgroups of the free and pointed homotopy classes of free and pointed self homotopy equivalences of X which act nilpotently on H∗(X) and π∗(X). We give algebraic models, in terms of complete differential graded Lie algebras (cdgl’s), of the rational homotopy type of these fibrations. Explicitly, if L is a cdgl model of X, there are connected sub cdgl’s DerGL and DerΠL of the Lie algebra of derivations of L such that the geometrical realizations of the sequences of cdgl morphisms L ad → DerGL → DerGL ̃×sL and L → L ̃×DerΠL → DerΠL have the rational homotopy type of the above classifying fibrations. Among the consequences we also describe in cdgl *We give algebraic models, in terms of complete differential graded Lie algebras (cdgl's), of the rational homotopy type of these fibrations. Explicitly, if L is a cdgl model of X, there are connected sub cdgl's and of the Lie algebra of derivations of L such that the geometrical realizations of the sequences of cdgl morphisms have the rational homotopy type of the above classifying fibrations. Among the consequences we also describe in cdgl terms the Malcev -completion of G and π together with the rational homotopy type of the classifying spaces BG and Bπ.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.language.isospaes_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLie, Algebras dees_ES
dc.subject.otherLie modelses_ES
dc.subject.otherClassifying spaces and fibrationses_ES
dc.subject.otherHomotopy automorphismses_ES
dc.subject.otherRational homotopoy theoryes_ES
dc.titleLie models of homotopy automorphism monoids and classifying fibrationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.1016/j.aim.2022.108359
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional