Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez-Cruces, Manuel Alejandro 
dc.contributor.authorGarcía-González, Antonio Luis 
dc.contributor.authorMoreno-Morales, María Belén 
dc.contributor.authorItoh, Takamoto
dc.contributor.authorLópez-Crespo, Pablo 
dc.date.accessioned2022-05-25T06:36:19Z
dc.date.available2022-05-25T06:36:19Z
dc.date.issued2022-04
dc.identifier.citation.S. Cruces, A. Garcia-Gonzalez, B. Moreno, T. Itoh, P. Lopez-Crespo, Critical plane based method for multiaxial fatigue analysis of 316 stainless steel, Theoretical and Applied Fracture Mechanics, Volume 118, 2022, 103273, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2022.103273.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/24191
dc.description.abstractIn this work, the fatigue behaviour of 316 stainless steel is studied with different critical plane models. Seven cylindrical samples were used for the study, being subjected to different complex loading paths, generating combined stresses along the axial and transversal sample directions, these being: individual axial stress, individual hoop stress, alternating axial and hoop stress, a proportional combination of axial and hoop stress, and a non-proportional combination of L-shaped and square-shaped axial and hoop stress. The fatigue analysis is performed using five critical plane models; named Fatemi-Socie, Varvani-Farahani, Gan-Wu-Zhong, Liu I and Liu II. The models were assessed based on their fatigue life and crack angle prediction capacity. The Gan-Wu-Zhong recently proposed critical plane model was examined and provided acceptable results for the multiaxial loads tested on 316 steel. Nevertheless, Fatemi-Socie produced the most accurate results in terms of cracking orientation and Liu II gave the best fatigue life predictions.es_ES
dc.description.sponsorshipFinancial support of Programa Operativo FEDER from the Junta de Andalucia (Spain) through grant reference UMA18-FEDERJA-250 is greatly acknowledged. Support from the Oceanic Engineering Research Institute from Malaga is also acknowledged. Industrial support from Bettergy and Dr Nicolas Ordo ̃nez is greatly acknowledged, as well as access to different structures and materials in the energy industry. We would also like to acknowledge funding for open access charge: Universidad de Malaga / CBUA.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAcero inoxidablees_ES
dc.subject.otherBiaxial fatiguees_ES
dc.subject.other316 stainless steeles_ES
dc.subject.otherCritical plane methodses_ES
dc.subject.otherMean stresses_ES
dc.titleCritical plane based method for multiaxial fatigue analysis of 316 stainless steeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.identifier.doihttps://doi.org/10.1016/j.tafmec.2022.103273
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional