The plant cuticle, as the interface between the plant and the environment, plays an important role in plant performance, fruit quality and postharvest. Plant cuticles show compositional and structural variability among and within species and also between organs of the same species. It is composed by a cutin polymer matrix with waxes that can be accumulated on the surface (epicuticular waxes) or embedded in the matrix (intracuticular waxes), phenolics and polysaccharides from the cell wall. In tomato fruit cuticle, the phenolic fraction is a characteristic component and is the main modulator of the cuticle’s stiffness, deformation and strength. This phenolic domain is composed of cinnamic acids derivatives present during fruit growth and increases significantly during ripening with the incorporation of the flavonoid naringenin chalcone, responsible for the yellow-orange color of the cuticle in red ripe tomatoes.
Understanding the genetic basis of cuticle composition and color is needed for breeding in crop species. Little is known about the range and the genetic bases of naturally occurring variation for cuticle composition and structure in tomato. The general objective of this work is to dissect the genetic architecture underlying these variations and to exploit available natural genetic diversity in wild species to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties.
In this work, we have explored for the first time the cuticle variability of red-fruited species in two mapping populations derived from the interspecific cross between the domesticated tomato (Solanum lycopersicum L.) and its closest wild relative Solanum pimpinellifolium L., a Recombinant Inbred Line population and an Introgression Line population. Quantitative trait locus (QTL) analyses were conducted to investigate tomato fruit cuticle components and color traits.