Mostrar el registro sencillo del ítem

dc.contributor.authorSantoyo-Ramón, José Antonio
dc.contributor.authorCasilari-Pérez, Eduardo 
dc.contributor.authorCano-García, José Manuel 
dc.date.accessioned2022-05-12T07:03:24Z
dc.date.available2022-05-12T07:03:24Z
dc.date.created2022-05-12
dc.date.issued2022-05
dc.identifier.urihttps://hdl.handle.net/10630/24092
dc.description.abstractThe popularity of wearables and their seamless integration into our daily lives have transformed these devices into an appealing resource to deploy automatic fall detection systems. During last years, a massive literature on new methods and algorithms for these wearable detectors has been produced. However, in most cases these algorithms are tested against one single (or at best two) datasets containing signals captured from falls and conventional movements. This work evaluates the behavior of a fall detection system based on a convolutional neural network when different public repositories of movements are alternatively used for training and testing the model. After a systematic cross-dataset evaluation involving four well-known datasets, we show the difficulty of extrapolating the results achieved by a certain classifier for a particular database when another dataset is considered. Results seem to indicate that classification methods tend to overlearn the particular conditions (typology of movements, characteristics of the employed sensor, experimental subjects) under which the training samples were generated.es_ES
dc.description.sponsorshipUniversidad de Málaga, Campus de Excelencia Internacional Andalucia Tech. Fondos FEDER (proyecto UMA18-FEDERJA-022), Junta de Andalucía (proyecto PAIDI P18-RT-1652)es_ES
dc.language.isoenges_ES
dc.subjectInteligencia artificiales_ES
dc.subjectDispositivos lógicoses_ES
dc.subjectDispositivos lógicos programableses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAlta tecnologíaes_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherAccelerometeres_ES
dc.subject.otherFall detection systemes_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherHuman activity recognitiones_ES
dc.subject.otherConvolutional neural networkses_ES
dc.titleA cross-dataset evaluation of wearable fall detection systemses_ES
dc.typeconference outputes_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.relation.eventtitleThe15th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA ’22)es_ES
dc.relation.eventplaceCorfu, Greciaes_ES
dc.relation.eventdate29 Junio 2022es_ES
dc.departamentoTecnología Electrónica
dc.rights.accessRightsopen access


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem