Mostrar el registro sencillo del ítem
The Milnor-Moore theorem for L∞ algebras in rational homotopy theory
dc.contributor.author | Moreno-Fernández, José Manuel | |
dc.date.accessioned | 2022-05-04T11:32:02Z | |
dc.date.available | 2022-05-04T11:32:02Z | |
dc.date.issued | 2021-09-20 | |
dc.identifier.citation | Moreno Fernández, J.M. The Milnor-Moore theorem for L∞ algebras in rational homotopy theory. Math. Z. 300, 2147–2165 (2022). https://doi.org/10.1007/s00209-021-02838-z | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/24032 | |
dc.description.abstract | We give a construction of the universal enveloping A∞ algebra of a given L∞ algebra, alternative to the already existing versions. As applications, we derive a higher homotopy algebras version of the classical Milnor-Moore theorem. This proposes a new A∞ model for simply connected rational homotopy types, and uncovers a relationship between the higher order rational Whitehead products in homotopy groups and the Pontryagin-Massey products in the rational loop space homology algebra | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. charged to the Universidad de Málaga/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Algebra universal | es_ES |
dc.subject.other | Universal enveloping algebra | es_ES |
dc.subject.other | Rational homotopy theory | es_ES |
dc.subject.other | A∞-algebra | es_ES |
dc.subject.other | L∞-algebra | es_ES |
dc.subject.other | Loop space homology | es_ES |
dc.subject.other | Higher Whitehead products | es_ES |
dc.subject.other | Massey-Pontryagin products | es_ES |
dc.title | The Milnor-Moore theorem for L∞ algebras in rational homotopy theory | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.centro | Facultad de Ciencias | es_ES |
dc.identifier.doi | https://doi.org/10.1007/s00209-021-02838-z | |
dc.rights.cc | Atribución 4.0 Internacional | * |