JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Road pollution estimation from vehicle tracking in surveillance videos by deep convolutional neural networks

    • Autor
      García-González, Jorge; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2021-12
    • Editorial/Editor
      ELSEVIER
    • Palabras clave
      Aire -- Contaminación
    • Resumen
      Air quality and reduction of emissions in the transport sector are determinant factors in achieving a sustainable global climate. The monitoring of emissions in traffic routes can help to improve route planning and to design strategies that may make the pollution levels to be reduced. In this work, a method which detects the pollution levels of transport vehicles from the images of IP cameras by means of computer vision techniques and neural networks is proposed. Specifically, for each sequence of images, a homography is calculated to correct the camera perspective and determine the real distance for each pixel. Subsequently, the trajectory of each vehicle is computed by applying convolutional neural networks for object detection and tracking algorithms. Finally, the speed in each frame and the pollution emitted by each vehicle are determined. Experimental results on several datasets available in the literature support the feasibility and scalability of the system as an emission control strategy.
    • URI
      https://hdl.handle.net/10630/23957
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.asoc.2021.107950
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S1568494621008723-main.pdf (2.454Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA