JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A takeover time-driven adaptive evolutionary algorithm for mobile user tracking in pre-5G cellular networks

    • Autor
      Dahi, Zakaria Abdelmoiz; Alba-Torres, EnriqueAutoridad Universidad de Málaga
    • Fecha
      2022-02
    • Editorial/Editor
      ELSEVIER
    • Palabras clave
      Comunicación -- Análisis de red
    • Resumen
      Cellular networks are one of today’s most popular means of communication. This fact has made the mobile phone industry subject to a huge scientific and economic competition, where the quality of service is key. Such a quality is measured on the basis of reliability, speed and accuracy when delivering a service to a user no matter his location or behaviour are. This fact has placed the users’ tracking process among the most difficult and determining issues in cellular network design. In this paper, we present an adaptive bi-phased evolutionary algorithm based on the takeover time to solve this problem. The proposal is thoroughly assessed by tackling twenty-five real-world instances of different sizes. Twenty-eight of the state-of-the-art techniques devised to address the users’ mobility problem have been taken as the comparison basis, and several statistical tests have been also conducted. Experiments have demonstrated that our solver outperforms most of the top-ranked algorithms.
    • URI
      https://hdl.handle.net/10630/23945
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.asoc.2021.107992
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S1568494621009145-main.pdf (2.706Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA