JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Complex network modelling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis

    • Autor
      Gallego-Molina, Nicolás J.; Ortiz-García, AndrésAutoridad Universidad de Málaga; Martínez-Murcia, Francisco Jesús; Giménez-de-la-Peña, AlmudenaAutoridad Universidad de Málaga; Formoso, Marco A.
    • Fecha
      2022-01-05
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Dislexia - diagnóstico - Innovaciones tecnológicas
    • Resumen
      Complex network analysis has an increasing relevance in the study of neurological disorders, enhancing the knowledge of brain’s structural and functional organization. Network structure and efficiency reveal different brain states along with different ways of processing the informa- tion. This work is structured around the exploratory analysis of the brain processes involved in low-level auditory processing. A complex network analysis was performed on the basis of brain coupling obtained from electroencephalography (EEG) data, while different auditory stim- uli were presented to the subjects. This coupling is inferred from the Phase-Amplitude coupling (PAC) from different EEG electrodes to explore differences between control and dyslexic sub- jects. Coupling data allows the construction of a graph, and then, graph theory is used to study the characteristics of the complex networks throughout time for control and dyslexic subjects. This results in a set of metrics including clustering coefficient, path length and small-worldness. From this, different characteristics linked to the temporal evolution of networks and coupling are pointed out for dyslexics. Our study revealed patterns related to Dyslexia as losing the small- world topology. Finally, these graph-based features are used to classify between control and dyslexic subjects by means of a Support Vector Machine (SVM).
    • URI
      https://hdl.handle.net/10630/23570
    • DOI
      https://dx.doi.org/10.1016/j.knosys.2021.108098
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S095070512101162X-main.pdf (1.628Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA