JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    LIBS combined with a decision tree-based algorithm: an analytical tandem for sorting of waste refractories used in steelmaking industries

    • Autor
      Moros-Portolés, JavierAutoridad Universidad de Málaga; Maza, David; Soto, Aintaze; Cabalín-Robles, Luisa MaríaAutoridad Universidad de Málaga; Laserna-Vázquez, José JavierAutoridad Universidad de Málaga
    • Fecha
      2021
    • Palabras clave
      Espectroscopía de plasma inducido por láser; Materiales refractarios -- Reciclado
    • Resumen
      Refractories are materials that can withstand high temperatures and maintain their mechanical functions and properties during long time, even in contact with corrosive liquids or gases. These materials are indispensable for all high-temperature processes, such as the production of metals, steel, cement, glass and ceramics [1, 2]. Over a decade ago the refractory scrap recycling and the circular economy have started to gain increasing interest because of the potential benefits both from an economic (cheaper raw materials, lower treatment costs, reducing costs for landfilling) and environmental (saving virgin resources, reducing wastes and lower energy demand and CO2 emissions compared to virgin materials) points-of-view. In this context, the present investigation focused on the design of a classification strategy based on a novel machine learning algorithm combined with optical emissions from LIBS spectral responses to the systematic categorization of refractory residues in 10 different classes. The crucial factor that judges the realistic operation of LIBS to proper sorting of spent refractories is the complex spectral similarity revealed by these materials, usually containing Al2O3, MgO and SiO2 in varying proportions and ZrO in the case of isostatic. By choosing original LIBS emission intensities and intensity ratios pertinent to and involving the most relevant constituent elements (Al, Mg, C ‒through its related-species CN‒, Si and Zr) of various refractory wastes, a decision tree with multiple nodes that decided how to classify inputs was designed and trained. The figure 1 shows the LIBS sensor operating at the UMALASERLAB facilities to the analysis of a refractory sample. The developed strategy has been also validated in the UMALASERLAB using two sets of "blind" samples of refractory residues provided by Sidenor S.L.
    • URI
      https://hdl.handle.net/10630/23413
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    EMSLIBS_AbstractRefractarios.pdf (192.9Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA