La programación no lineal de enteros mixtos es un campo de optimización importante y desafiante. Este tipo de problemas pueden contener variables continuas e enteras, así como restricciones lineales y no lineales. Esta clase de problemas tiene un papel fundamental en la ciencia y la industria, ya que proporcionan una forma precisa de describir fenómenos en diferentes áreas como ingeniería química y mecánica, cadena de suministro, gestión, etc. La mayoría de los algoritmos de última generación para resolver los problemas de programación no lineal de enteros mixtos no convexos están basados en los métodos de ramificación y acotación. El principal inconveniente de este enfoque es que el árbol de búsqueda puede crecer muy rápido impidiendo que el algoritmo encuentre una solución de alta calidad en un tiempo razonable. Una posible alternativa que evite la generación de grandes árboles consiste en hacer uso del concepto de descomposición para hacer que el procedimiento sea más manejable. La descomposición proporciona un marco general en el que el problema original se divide en pequeños subproblemas y sus resultados se combinan en un problema maestro más sencillo.
Esta tesis analiza los métodos de descomposición para la programación no lineal de enteros mixtos. El principal objetivo de esta tesis es desarrollar métodos alternativos al de ramificación y acotación, basados en el concepto de descomposición. Para la industria y la ciencia, es importante calcular una solución óptima, o al menos, mejorar la mejor solución disponible hasta ahora. Además, esto debe hacerse en un plazo de tiempo razonable. Por lo tanto, el objetivo de esta tesis es diseñar algoritmos eficientes que permitan resolver problemas de gran escala que tienen una aplicación práctica directa. En particular, nos centraremos en modelos que pueden ser aplicados en la planificación y operación de sistemas energéticos.