JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Análisis y estimación de superficie basada en Mapas Auto-Organizados

    • Autor
      Sánchez-Andrades, IgnacioAutoridad Universidad de Málaga; Velasco García, Juan María; Castillo-Aguilar, Juan JesúsAutoridad Universidad de Málaga; Cabrera-Carrillo, Juan AntonioAutoridad Universidad de Málaga; Sánchez Lozano, Miguel
    • Fecha
      2021-10-03
    • Palabras clave
      Redes neuronales; Inteligencia artificial
    • Resumen
      En este trabajo se propone la utilización de Mapas Auto-Organizados para llevar a cabo la tarea de clasificación de superficies y estimación de adherencia. Este tipo de redes neuronales se caracteriza por emplear el paradigma del Aprendizaje No Supervisado, logrando un aprendizaje autónomo de las características de los datos que le permitan elaborar la separación de los datos. La información de partida sobre la cual se desarrolla este trabajo es la vibración producida por la rodadura del neumático en distintas superficies. El análisis previo de los datos permite la extracción de características estadísticas sobre las que el SOM zealizará su trabajo. Éstos mapas agrupan conjuntos similares de datos en zonas próximas y además generan una reducción dimensional del problema al mostrarse sobre un plano bidimensional. Este hecho, facilita el análisis de problemas con numerosas variables de entrada al poder trabajarse de manera visual y sencilla. Además, permite la validación de los datos para su uso directo o para ser empleados en otros sistemas en etapas posteriores, así como la inferencia de nueva información.
    • URI
      https://hdl.handle.net/10630/23117
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    09_226_Sánchez_Presentación.pdf (3.568Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA