This doctoral dissertation studies and characterizes of a combination of objectives with several logistic applications. This combination aims to pursue not only a company benefit but a benefit to the clients waiting to obtain a service or a product. In classic routing theory, an economic approach is widely studied: the minimization of traveled distance and cost spent to perform the visiting is an economic objective. This dissertation aims to the inclusion of the client in the decision-making process to bring out a certain level of satisfaction in the client set when performing an action.
We part from having a set of clients demanding a service to a certain company. Several assumptions are made: when visiting a client, an agent must leave from a known depot and come back to it at the end of the tour assigned to it. All travel times among the clients and the depot are known, as well as all service times on each client. This is to say, the agent knows how long it will take to reach a client and to perform the requested service in the client location. The company is interested in improving two characteristics: an economic objective as well as a servicequality objective by minimizing the total travel distance of the agent while also minimizing the total waiting time of the clients.
We study two main approaches: the first one is to fulfill the visits assuming there is a single uncapacitated vehicle, this is to say that such vehicle has infinite capacity to attend all clients. The second one is to fulfill the visits with a fleet of k-uncapacitated vehicles, all of them restricted to an strict constraint of being active and having at least one client to visit. We denominate the single-vehicle approach the minimum latency-distance problem (mldp), and the k-sized fleet the k-minimum latency-distance problem (k-mldp).
As previously stated, this company has two options: to fulfil the visits with a single-vehicle or with a fixed-size fleet of
k agents to perform the visits.