Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and Fscore. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced
shifting yields better performance than any of the two methods when applied alone.