JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Histopathological image analysis for breast cancer diagnosis by ensembles of convolutional neural networks and genetic algorithms

    • Autor
      Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Rodríguez Rodríguez, José Antonio; Thurnhofer Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2021-07
    • Palabras clave
      Mamas - Cáncer
    • Resumen
      One of the most invasive cancer types which affect women is breast cancer. Unfortunately, it exhibits a high mortality rate. Automated histopathological image analysis can help to diagnose the disease. Therefore, computer aided diagnosis by intelligent image analysis can help in the diagnosis tasks associated with this disease. Here we propose an automated system for histopathological image analysis that is based on deep learning neural networks with convolutional layers. Rather than a single network, an ensemble of them is built so as to attain higher recognition rates, which are obtained by computing a consensus decision from the individual networks of the ensemble. A final step involves the optimization of the set of networks that are included in the ensemble by a genetic algorithm. Experimental results are provided with a set of benchmark images, with favorable outcomes.
    • URI
      https://hdl.handle.net/10630/22693
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    N-1225 MiguelAngel.pdf (1.050Mb)
    Colecciones
    • Artículos

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA