Los mapas auto-organizados o redes de Kohonen (SOM por sus siglas en inglés, self-organizing map) fueron introducidos por el profesor finlandés Teuvo Kalevi Kohonen en los años 80. Un mapa auto-organizado es una herramienta que analiza datos en muchas dimensiones con relaciones complejas entre ellos y los reduce o representa en, usualmente, una, dos o tres dimensiones. La propiedad más importante de una SOM es que preserva las propiedades topológicas de los datos, es decir, que datos próximos aparecen próximos en la representación.
La literatura relacionada con los mapas auto-organizados y sus aplicaciones es muy diversa y numerosa. Las neuronas en un mapa auto-organizado clásico están distribuidas en una topología (o malla) bidimensional cuadrada o hexagonal y las distancias entre ellas son distancias euclídeas. Una de las disciplinas de investigación en SOM consiste en la modificación y generalización del algoritmo SOM. Esta Tesis Doctoral por compendio de
publicaciones se centra en esta línea de investigación.
En concreto, los objetivos desarrollados han sido el estudio de topologías bidimensionales alternativas, el estudio comparativo de topologías de una, dos y tres dimensiones y el estudio de variaciones para la distancia y movimientos euclídeos. Estos objetivos se han abordado mediante el método científico a través de las
siguientes fases: aprehensión de resultados conocidos, planteamiento de hipótesis, propuesta de métodos alternativos, confrontación de métodos mediante experimentación, aceptación y rechazo de las diversas hipótesis mediante métodos estadísticos.