Mostrar el registro sencillo del ítem

dc.contributor.advisorSidrach-de-Cardona-Ortin, Mariano 
dc.contributor.advisorWeiss, Karl-Anders
dc.contributor.authorKaaya, Ismail
dc.date.accessioned2020-09-17T12:56:19Z
dc.date.available2020-09-17T12:56:19Z
dc.date.created2020-06-18
dc.date.issued2020-09-14
dc.identifier.urihttps://hdl.handle.net/10630/19789
dc.descriptionFinally, the hybrid model allows to achieve accurate long-term predictions and a physical understanding of the dominating degradation mechanisms. We believe such a model is useful to calculate more reliable levelized cost of energy and thus the economic viability of solar energy. It will also help to improve development of new PV materials according to the operating climatic conditions. Fecha de entrega Tesis Doctoral: 1 febrero 2020en_US
dc.description.abstractWhen exposed in outdoor operating conditions, photovoltaic (PV) modules are affected by different climatic stresses causing different degradation mechanisms within the module, which leads to performance loss. Mathematical models are usually utilized to determine degradation rates of PV modules in shorter periods and extrapolate to long-term degradation predictions. Two modelling methods: physical and data driven are commonly used. However, when long-term photovoltaic degradation predictions are required after a shorter time, the existing physical and data-driven methods often provide unrealistic degradation scenarios. Therefore, in this research two modelling approaches are developed. Firstly, a physical model to determine the degradation rates of PV modules based on outdoor climatic variables is developed. The model depends on the different degradation mechanisms leading to PV modules degradation. Secondly, a novel data-driven method has been proposed to improve the accuracy of long-term prediction with small degradation history. The model depends on the degradation patterns and multiple time dependent degradation factors. Finally, the two approaches are combined to form a hybrid model. The proposed physical model has been validated using outdoor experimental data of three identical mono-crystalline silicon modules installed in three benchmarking climates: maritime, arid and alpine. The proposed model can be applied to determine the degradation rates worldwide, given climatic variables are available. The proposed data-driven model has been calibrated and validated using different photovoltaic modules and systems data. The model provides reliable and more accurate long-term lifetime prediction compared to the available data-driven methods.en_US
dc.language.isoengen_US
dc.publisherUMA Editorialen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnergía solar - Investigaciónen_US
dc.subjectDurabilidad (Ingeniería)en_US
dc.subjectCélulas solaresen_US
dc.subjectCélulas fotovoltaicas - Deterioro - Efectos del climaen_US
dc.subject.otherDegradation ratesen_US
dc.subject.otherLifetime predictionen_US
dc.subject.otherModellingen_US
dc.subject.otherPV modulesen_US
dc.subject.otherPV systemsen_US
dc.subject.otherPhotovoltaic Modulesen_US
dc.titlePhotovoltaic Lifetime Forecast: Models for long-term photovoltaic degradation prediction and forecasten_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.departamentoIngeniería Mecánica, Térmica y de Fluidos


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional