En esta tesis se presenta una nueva aproximación a la distribución de de formas cuadráticas gaussianas (FCGs) no centrales tanto en variables reales como complejas. Para ello, se propone un nuevo método de análisis de variables aleatorias que, en lugar de centrarse en el estudio de la variable en cuestión, se basa en la caracterización estadística de una secuencia de variables aleatorias auxiliares convenientemente definida. Como consecuencia, las expresiones obtenidas, con independencia del grado de precisión adquirido, siempre representan una distribución válida, siendo ésta su principal ventaja.
Aplicando este método, se obtienen simples expresiones recursivas para la función densidad de probabilidad (PDF) y la función de distribución (CDF) de las FCGs reales definidas positivas. En el caso de las formas complejas, esta nueva forma de análisis conduce a aproximaciones para los estadísticos de primer orden en términos de funciones elementales (exponenciales y potencias), siendo más convenientes para cálculos posteriores que otras soluciones disponibles en la literatura. La tratabilidad matemática se ejemplifica mediante el análisis de sistemas de combinación por razón máxima (MRC) sobre canales Rice correlados, proporcionando aproximaciones cerradas para la probabilidad de outage y la probabilidad de error de bit.