Mostrar el registro sencillo del ítem

dc.contributor.authorDraper-Fontanals, Cristina 
dc.date.accessioned2020-03-05T12:23:36Z
dc.date.available2020-03-05T12:23:36Z
dc.date.created2020
dc.date.issued2020-03-05
dc.identifier.urihttps://hdl.handle.net/10630/19367
dc.description.abstractIt is well known that octonions (both real and complex) are very involved in the structure of the exceptional Lie algebras. We will explore several aspects of this relationship: how octonions provide models of the exceptional Lie algebras, coordinatizating them by means of structurable algebras. This plays an important role in the description of their inner ideals, and, in turn, these appear naturally in certain point-line geometries. In general, these constructions are related to gradings over the integers. We will use also the octonions and related structures to approach gradings on exceptional Lie algebras but over finite groups. Contrary to the situation above, these gradings are related to semisimple elements, and the nice symmetry behind the constructions is reflected in the corresponding Lie groups and in Particle Physics.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLie, Algebras deen_US
dc.subject.otherOctonionsen_US
dc.subject.otherLie algebrasen_US
dc.subject.otherModelsen_US
dc.subject.otherComposition algebrasen_US
dc.titleOctonions and exceptional Lie algebrasen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroEscuela de Ingenierías Industrialesen_US
dc.relation.eventtitleNew Trends on Quaternions and Octonionsen_US
dc.relation.eventplaceGuarda, Portugalen_US
dc.relation.eventdateFebruary, 2020en_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem